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AbskwL ?he " A a n t  expansion of the u(AFs Debye-Waller [acror is discussed for 
the polarized and 'non-polarized' K FXAFS formulae. ?lie improved formula for the 
non-polarized WAFS turns out lo  give a shorter near-neighbour dislance than Ule value 
oblained Iy llie expansion derived previously, Specifically, in CuBr at around 600 K its 
difference is about a01 A. 

1. Introduction 

The basic formula of polarized K extended x-ray absorption fine structure (EXAFS) is 
given in the plane-wave approximation under the condition kR,, >> 1 in the form 
[141 

x exp(i2(kRAB + a,&)] exp -- ( "B)l . .  

where k is the wavenumber of a photoelectron emitted from the x-ray absorbing atom 
A K edge. RA, and &AB are the distance between the atom A and scattering atom B, 
and its unit vector, respectively, fB( k ,  n) is the amplitude of the photoelectron back- 
scattered by B, 6, is the phase shift of the electron scattered by A, X is the damping 
factor stemming from many-body effects and E is the unit vector of the polarization 
of incident x-rays. W e n  the direction of E is effectively random with respect to RA,, 
then equation (1) can be averaged over E to obtain the 'non-polarized' formula 

If the effects of static and dynamic disorders are taken into account, we have 
another damping factor which is a 'DebyeWaller-type factor'. This effect has been 
discussed for equation (2) by Beni and Platman p] and Sevillano cl ai [6] in terms of 
the harmonic vibration model. Tranquada and Ingalls (TI) [7] have also discussed i t  
for equation (2) from the anharmonic vibration model in some superionic conductors. 
Recently we have also studied it using the harmonic and anharmonic models for high- 
T, superconductors [ S ,  91 and also superionic conductors [IO]. In these materials, the 
higher-order cumulant terms play quite an important role. 
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In an investigation of oriented materials, equation (1) should be used. The 
purpose of this paper is to obtain the EXAFS Debye-Waller factor for equations (1) 
and (2) in the cumulant expansion. In section 2, the cumulant expansion is precisely 
carried out for the polarized and non-polarized DlAFs formulae to obtain an improved 
damping factor. Section 1 discusses the validity of a superposition rule of the two 
averages for the cumulant series, with respect to dynamic and static disorders. On 
the basis of the two previous sections, we give the explicit EXAFS formulae made up 
of the cumulants to the fourth order in section 4. The spherical wave correction 
is also attached in these explicit formulae for reference. The improved cumulant is 
estimated, for example, for CuBr. 

2. Cumulant expansion 

21. Polarized m E S  

In equation (I), we consider a small deviation of RA, from no,, by 

7 1 ~ ~  = R A ,  - R$ (30) 

R A ,  = RB - R A  (3) 

(34 UAB = U, - U A  
where R i B  is the distance of a pair of atoms A and B in the regular lattice now 
under consideration. If an average value ((U)) of U is non-zero, we introduce the 
deviation 6u: 

RA,  = R +  6u ( 4 4  

= n$ + (46) 

6~ = 7 l A B  - ( ( ~ L ~ B ) )  ( ( 6 7 6 ) )  = 0 .  (W 

F(RAB)  = ( 6 '  ~ ~ , , ) ' ( ~ / R : B ) ~ X P ( ~ C R ~ )  (5) 

C = ik - 1 / X  (6) 

RA,  = R( 1 + 6) '12  0 
6 =  2 R . 6 u / R + 6 u 2 / R Z  (8) 

The meaning of the average (( )) will be given explicitly in section 3. 
Let us consider the function F(RAB):  

which is proportional to the B component of the normalized x-ray absorption function 
~ ( k )  in equation (1). If we express the scalar RA, as 

and equation (5) can be expanded in 6 in the form 
F( RA,) = ( E .  &)*( 1 / R 2 )  exp(2,CR)G (9) 

3!! 5 ! !  
( - l ) R ( l  + n )  1 - 7 6 +  --6* - - 6 3 +  .. . a) (2CR)" 

Q =  m,n=O c 2"! ( i2 3!22 4!23 
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When averaging equation (9) Over some distribution of 6 u  by Observing equation (k), 
we retain only the lowest-order terms in 6u in each order of (CR)m, such that 

((G)) = 1 + CR{[((Su2)) - 9(((6.. &I2)) + 2(((e  * 6u)(&. 6 u ) ) ) / ( e .  fL)1/R2 

+ 0(.3)} + (1 /2!22) (2CR)2[4 ( ( (Su .  r i y ) ) / ~ ~  + 0 ( ~ ~ ) 1 +  . .. . 
(12) 

It is also noted that the neglected term ( e .  S U ) ~  in the (2CR)O order is quite small 
compared with the leading term of (2CR)' order since the EXAFS formulae (1) and 
(2) are valid for kR > 1. Thus we have 

m .  

u ( 2 ) =  ( ( ( f i . 6 ~ ) ~ ) )  + i ( 2 / k R ) ( l  + R/X)(((&.su)')) 
+ i( 1 / 2 k R )  [5((( &. 6.)')) - ((6~')) - 4(((e . 6u)(&. 621))) / ( e .  fi)] 

(14) 

a ( n )  = (((Et. Su)")) n > 3 (15) 
where it is observed that kX >> 1, 6u/R<< 1 and 6u/X < 1. Equation (13) can now 
be rewritten in the 'cumulant' expansion form. We call this the cumulant expansion 
hereafter [7]. Thus equation (1) can be'given explicitly by the cumulant series formed 
of leading terms: 

a c 2  = 4 2 )  

uc3 = (((fi. 6u)31) 
uC4 = (((a. 6~)~)) - 3(((&. 6~)'))'. 
The nth-order cumulant for n 2 3 turns out to give 

as shown in equations (20) and (21) for reference. 

22. Non-polarized EXAFS 

If we use x-rays with ellR, or if we can average E .  67' of equation (14) over 4 of e 
where its polar coordinate with respect to R is taken as (1,8, @), then equation (19) 
is reduced to 
uc2 = ((( & ~ 5 u ) ~ ) ) + i (  2 /kR)( 1 + RIA) ((( fi&) '))+i( 1 / 2 k R )  [ ((( ~ L T ~ U ) ' ) )  - (( Sd))] . 

(23) 
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When we directly start from equation (2) and deal with it in the Same way as in 
section 2.1, we again obtain a series expansion of the form of equation (16) but with 
equations (22), (23) and 

- ~ B ( k , n ) e x p [ i 2 ( k R + 6 , ) ] e x p  
1 

kRZ X d k )  = - 
B 

Equations (22) and (23) constitute the correct expansion for the basic W S  
formula, equation (3, which improves the result obtained by 11 [7]. The result of TI 
lacks the third term i [ ( ( ( f i . 6 ~ ) ~ ) )  - ( (6u2))] /2kR of equation (23). 

3. Static and dynamic disorders 

Let us consider the average with respect to static and dynamic disorders. The static 
disorder is now the configuration disorder which does not depend on time, while 
the dynamic disorder arises from the thermal vibration of atoms. As to the actual 
average for the dynamic disorder, one can utilize the partition function with the 
relevant Hamiltonian IS, 61, while for the static disorder we may use, for example, 
the normal distribution function of 6u. The explicit expressions of the averages, 
however, are not concerned in this paper; so we do not consider them any more. 

Corresponding to the above two averages, the deviation can be divided into two 
parts as 

The average now reads 

where the subscripts s and (I denote the static and dynamic averages, respectively. 
Thus we have the cumulant composed of hvo parts: 

For cxample, 

Su = &U, + b u d .  

(( )) = (( )s)d 

(25) 

(26) 

uor = oc11.5 + oc,t,d. (27) 

(28) 

(29) 

uC4,+ = ( ( A .  6 ~ ~ ) ~ ) ~  - 3((R.  6u,)’): 

u ~ , ~  = ( (A!.  6 ~ ~ ) ~ ) d  - 3((R. 6ud)’):. 
This superposition holds for every cumulant for equation (16) which is composed of 
leading term as has been discussed in section 2. If we allow for the higher-order 
terms in 6u in each order of the cumulant then the cross terms such as ( ) d (  )*  
appear. 

4. Discussion and summary 

We have investigated the K W s  formulae in terms of the cumulant expansion for 
both polarized and non-polarized cases. The former formula, when the polarization 
vector e is taken parallel to the near-neighbour direction R, exactly amounts to three 
times the latter. 

4.1. Non-polarized EXAFS fortnula 

For atoms with highly anharmonic vibrations, the higher-order cumulant becomes 
naturally important. Superionic materials are quite involved in this case. Tiking 



K W F S  Debye-Waller faclor 8033 

CUI as an example, the anharmonic potential of a cubic works fairly well [II, 121. 
In the case of CuBr, the potential is considered to be a quartic [7]. Hence it is 
quite useful to have an explicit expression for the formula to the fourth order in the 
cumulant expansion. In addition, the lowest-order spherical wave correction in l / k R  
is introduced. 

Now define 

CAB zz e k B  + i<XB 

<kB = - 212' Reuc2  + $lz4ud - 2pg(k ) /kR  

= -2k2 Im uc2 - $k3uc3 4- 2 p L ( k ) / k R  

(30) 

(31) 

(32) 
with the aid of equations (20), (21) and (U), where the spherical wave correction to 
the order ( ~ / ! c R ) ~  is given by [3] 

p ( s ( k )  + i&(k) = 1 + ~ B ( k , r ) / f B ( k , r )  (33) 

fB(12;l) = (21 + l ) { e ~ p [ i 2 6 ~ ( I ) ]  - 1}/i2k 

(34) 

(35) 
0-i 

g a ( k ,  r) = c[l(l+ 1)/2]fB(k; 1)(-1)' (36) 
I=O 

6,(1) being the phase shift of the Ith partial wave scattered by the atom B. These 
spherical wave corrections (O[ ( I ;R) -3] )  originate from the two elementary scattering 
processes, namely the single scattering (by B) and double scattering (by B and A), 
which are exactly the processes for which equations (1) and (2) (O[(kR)-*]) are 
obtained. For the precise derivation, the reader is referred to 131. Then, by rewriting 
fB(Iz,x) = I fB(k , r ) lexp( i&)  and replacing R by RAB newly redefined, we have 
the non-polarized D(AFS formula 

(37) 
including the anharmonic vibrations of relevant atoms to the fourth order in the 
cumulant. Multiplying equation (37) by the factor 3 gives the formula for the polarized 
EX&% with EIIR,~. 

4.2 Evaluah'on of ucs 

The difference in the cumulant expansion obtained by n, which has been discussed 
at the end of section 2, involves equation (37). So it is of interest to see how it works 
in a quantitative manner. let us discuss only the dynamic disorder. 

The difference is the imaginary part of the second-order cumulant mc2, which 
contributes to the determination of the near-neighbour distance R as we see from 
equations (32) and (37). If we neglect the 1 / X  term in equation (23) and simply 
take (6uZ), as 3 ( ( & .  6 7 ~ ) * ) ~ ,  then the effective distance can be given within the 
second-order cumulant by 

Re, = R -  ( ( R . & L ) ~ ) ~ / R  (present work). (38) 
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= d  x '1 

On the other hand, for the expansion obtained by n we have 

Since Rer is experimentally determined, the distance R is smaller for the present work 
than the value obtained by n. In the case of the superionic conductor CuBr at 600 K 
[lo], ( ( & . ~ U ) ~ ) , / R  Y 0.01 4 which means that the B r X u  distance is about 0.01 8, 
shorter than the value estimated Irom equation (39). A full temperature dependence 
of ((R. ~ U ) ~ ) , , / R  for CuBr is shown in figure 1, where the analyses have been done 
for the WCAFS data from the Br K edge [lo] by the use of equation (37) without 
the spherical wave correction. The discussion about the spherical wave correction is 
beyond the scope of the present paper. 

It can be understood that the present cumulant expansion gives rise to a correction 
of about 1/100 8, in the CuBr superionic conductor. However, in materials with weak 
anharmonicity, the non-polarized EXAFS formula effectively gives the result obtained 
by n. 
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